
Recurrent Neural Network for Gene Regulation
Network Construction on Time Series Expression

Data
Yue Zhao*, Pujan Joshi, Dong-Guk Shin*

Computer Science and Engineering Department
University of Connecticut
Storrs,Connecticut 06269

Email: yue.2.zhao@uconn.edu

Abstract—We propose a new way of exploring potential tran-
scription factor targets in which the Recurrent Neural Network
(RNN) is used to model time series gene expression data. Once
the training of the RNN is completed, inference is performed
through feeding the RNN artificially constructed signals. These
artificial signals emulate the original gene expression data and
the transcriptional factor of interest is set to be zero constantly
to model the knockout state of the transcription factor. The
predicted expression patterns of the other genes from the RNN
are then used to measure the likelihood that the gene is regulated
by the knocked out transcriptional factor. After repeating the
same process for each gene as Transcription Factor in the
dataset, we construct a gene regulation network with edge weights
assigned. We demonstrate the effectiveness of our model by
comparing our method with existing popular approaches. The
result shows that our RNN method can identify transcription
factor targets with higher accuracies than most of existing
approaches. Overall, our RNN model trained on time series gene
expression data can be useful for discovering transcription factor
targets as well as building a gene regulation network.

Keywords—Recurrent Neural Network; Gene Regulation Net-
work; Modeling and Simulation

I. INTRODUCTION

Single-cell RNA-Seq (scRNA-Seq) can now quantify the
expression of individual cells and it allows scientists to analyze
transcriptome differences among cells [1]. Single cell RNA-
seq data can be used for cell type identification and cell lineage
estimation. Specifically, one can reconstruct the differentiation
process by identifying the degree of differentiation of each
cell according to timeline [2]. Moreover, correlations of gene
expression can be calculated with high accuracy if scRNA-
Seq can distinguish the states of individual cells. Especially,
the accurate co-expression pattern of each cell type can even
reveal the key regulatory factors for lineage programming
[3]. Expression dynamics in pseudo-time and accurate rela-
tionships among genes have been inferred from scRNA-Seq
data [4]. Gene regulatory network (GRN) inference has been
performed since pseudo-time can be regarded as interpreting
time-dependency information. The key issue is how to convert
discovery of gene regulation network from temporal gene

The copyright notice: 978-1-7281-1867-3/19/$31.00 c©2019 IEEE

expression data. There exist multiple approaches aiming to
reconstruct GRN from time-series data in which many assumes
the time series as stationary. For this reason, higher resolution
inference cannot be performed. Our proposal is using RNN to
tackle this particular limitation. In section II, we review the
existing approaches for GRN construction. In section III, we
focus on methodology illustration. In Section IV, we prove
the significance of this approach by comparing the accuracy
of discovering GRN against existing approaches with three
independent single cell data sets. Finally, in section V, a
conclusion is given together with multiple future extension
ideas of our method.

II. RELATED WORK

An Boolean network-based algorithms for inferring GRN
from single-cell data has been given by [5]. Meanwhile
ordinary differentiation equations (ODEs) have been used to
describe regulatory network and expression dynamics. Al-
though several ODE-based network-inference algorithms have
been proposed [6] [7], most of them assume the time series
is steady thus are not suitable for the differentiation case.
Several ODE-based algorithms that infer GRNs such that the
observed expression dynamics can be reconstructed from the
optimized ODE [8]. SCODE, a most recent approach based
on ODE was proposed [4]. Previously, we presented a series
of methods in which the pathway route is used to discover
potential transcriptional targets and extend pathways [9] [10]
[11] [12] [13].

III. METHODS

A. Framework overview

Given the time series data xt, t = 1 . . . T , a recurrent neural
network (RNN) is fitted to explain the time series thoroughly.
After the information of the biological process gets occupied
by RNN through training, artificial time series signal will be
used as input to the RNN. In the artificial time series signal,
a chosen Transcription Factor (TF) is set to be zero (knocked
out) while other genes have the same values as original training
data. And the prediction of other genes from the RNN will
be used to determine if this gene is being regulated by the

Published  in IEEE BIBM 2019, San Diego, CA, USA, 18-21 November



Single Cell Expression data 1 Sort by Psudotime 2 Whole Data Set

Training Validation Test 

RNN Training

Hyperparamter 
Tuning on 

Validation set

Performance 
Checking on 

Test set

 RNN

7

Knock out TF

Artificial Time 
Series Data

Prediction 
Time Series

Zero Counts Scoring on 
other genes predicted 

Time Series

Score the edge in GRN

Result GRN constructed

3

4

5

9

6

8
10

11

(Or use real time series expression data directly)

Fig. 1. Workflow overview

knocked out TF by considering how different the predicted
expression values are from the original dataset. The workflow
is displayed in Figure.1.

B. Recurrent Neural Network

The Recurrent Neural Network architecture is given as
follows. The vanilla architecture is used.

st = g(Wa

[
st−1
xt

]
+ ba), t = 1 . . . T

yt = g(Wyst + by), t = 1 . . . T

(1)

where st is the hidden state memorizing the information from
all previous time points before time t. The initial state s0 = 0.
Function g is the nonlinear transformation function Rectified
Linear Unit (ReLU). Here we specifically select ReLU as
the nonlinear activation function because the range of ReLU
greatly matches the values of gene expression. In this way,
gene suppression is well represented by 0 output from the
ReLU. The Wa and Wy are weight matrices shared by each
time point.

The whole sequence data was firstly divided into training,
validation and testing as shown in Fig.2. The training dataset
is then fed into the RNN in batches. We use one batch data,
x1, x2, . . . , xm to predict the next data point, xm+1. The error

of each prediction is then accumulated and used as the Loss for
training as shown in (2). The loss function in (2) consists of L2
norm of distance between yt and xt+1 such that the prediction
of time point t becomes the data value of the next time point t+
1, xt+1. Regularization term in the loss function is introduced
to penalize Wa so as to force a sparse structure in the weight
matrix, thus only the key regulator genes in the previous steps
can affect the next time step values. Other weight matrix is
not regularized since they do not use information from xt

directly. The L1 loss coefficient α is chosen such that the
RNN has the best performance on the validation dataset, i.e.
the validation dataset has the smallest loss defined by (2). Test
set loss is checked in order to have the model have a good
prediction power on test data set and avoid overfitting. The
loss on validation and test data is calculated in the same way
as on the training data, as is illustrated in Fig.2.

L =

T−1∑
t=m−1

||xt+1 − yt||2 + α||Wa||1 (2)

where m is the batch size. Gradient calculation is done by
backpropagation through time [14]. And Adam optimization
[15] is used to update the weights.



Training Dataset Validation dataset Test dataset

Using one batch data to predict 
the next time point

Batch of size m
x2, x3,..., xm

xm+1

Batch of size m
xT-m+1, xT-m+2,..., xT-1

xT

Batch of size m
x1, x2,..., xm-1

xm

...

The same process is repeated for validation and test 
dataset to evaluate performance

Batch of size m
x2, x3,..., xm

xm+1

Batch of size m
xT’-m+1, xT’-m+2 ,..., xT’-1

xT’

Batch of size m
x1, x2,..., xm-1

xm

...
Batch of size m

x2, x3,..., xm
xm+1

Batch of size m
xT’-m+1, xT’-m+2,..., xT’-1

xT’

Batch of size m
x1, x2,..., xm-1

xm

...
Moving the batch forward in the 
rolling window pattern

Fig. 2. Data Partition Illustrution: For each batch, the last time point in the batch is predicted based on the previous m− 1 data points in the batch. T stands
for the size of training data while T’ is the validation and test data size

After getting a trained RNN, certain biological process in
the given time series data is captured by the model. We can
further use this RNN as a simulator of the biological process
and study the gene behavior at each time step. Please note that
this is only one approach to train the RNN, other approaches
can also be considered as long as the RNN can be trained
properly.

C. Inference by Artificial Signals with a Transcription Factor
Knockout

In this subsection, we use the trained RNN to construct
a gene regulation network. Initially we assume that the bi-
ological mechanism has been learned by the RNN. Then
we artificially wipe out one certain TF expression to have
expression patterns in its corresponding targets change. More
or less, we are performing a gene ’knockout’ experiment on
each TF and check the responses of other genes through the
trained RNN prediction.

Here we generate artificial signals from the original dataset
by setting a chosen TF gi to be 0, meaning the TF gi is fully
knocked out at each time point. The artificially modified data
is then fed into the RNN in batches where the batch size is
same as the one used during training. The RNN prediction
for each gene j is collected and denoted as ŷj where ŷj is a
vector with the size of the number of predictions made. The
predicted value at each time point t, will be denoted as ŷjt

Different expression patterns should be observed for the
knockout TF direct target as long as the RNN truely captures
the biological process. Ideally, the direct target gene should be
highly affected and the expression levels should be much lower
than the original expression in data if the TF is functioning
properly and the TF is up regulating this target. On the other
hand, if the TF is down regulating the target, high expression
of the target is expected due to the knock-out. When we feed
the artificial signal where only the TF is “knocked out”, the
predicted expression level of each gene can be used to measure
how likely the gene is regulated by the knocked out TF. Here
we use the score in (3) to rank the weight of edge from gi

to gj in Gene Regulation Network since the more zeros (high
expression value that is larger than β) are observed in the
predicted expression of gj , the more likely that gj is up (down)
regulated by the knocked out TF gi.

Scoreij = max(
∑
t

I(ŷjt = 0),
∑
t

I(ŷjt > β)) given xi = 0

(3)
After repeating the knockout process for each gene in the
dataset, we finish constructing a weighted GRN for this time
series dataset. In the next section, we compare our approach
against several existing methods to show the significance of
our proposed framework.

IV. COMPARISON STUDY

Our goal is to compare our method against SCODE [4],
which can successfully construct regulatory network using
single cell time series data. In this study, we will directly
compare the result of our work with the results from SCODE
and other existing regulatory network discovery approaches.
This study shows that our RNN approach is capable of
detecting regulatory relationships more accurately than most
existing approaches. Our implementation of RNN is done in
Python (Tensorflow) [16].

A. Data Preparation

All data sets are single cell RNA-seq data with pseudo-time
provided by [4]. In order to compare the result against the one
in [4], we use exactly the same dataset provided in the SCODE
paper, which contains 100 genes for each dataset. By sorting
the cells by pseudo-time estimated by Monocle [2], we end
up having three time series data sets. Each data set is used to
train an RNN separately. The discovered regulation network
for each dataset is compared against the result shown in [4].

1) Data 1: It contains 456 mouse ES cells in the process
of transformation to primitive endoderm cells. The first time-
course scRNA-Seq dataset analyzed was derived from primi-
tive endoderm (PrE) cells differentiated from mouse ES cells
[17].



0 10000 20000 30000 40000 50000 60000
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Lo

ss
Loss visualization in different data sets in Training

Train
Validation
Test

Fig. 3. Loss visualization during RNN training: The y axis represents loss
defined by (2), while the x axis represents training iterations using one batch
of data. L shape curve on test set indicates that the model is not overfitting

2) Data 2: It contains 405 cell mouse embryonic fibroblast
cells differentiating into myocytes. This second dataset was
derived from scRNA-Seq data obtained to examine direct
reprogramming of mouse embryonic fibroblast (MEF) cells
destined to myocytes [18].

3) Data 3: It contains 758 human ES cells differentiating
into definitive endoderm cells. The third dataset was a scRNA-
Seq time course derived from definitive endoderm (DE) cells
differentiated from human ES cells [19].

In this study, we scale the expression of each gene to (0, 10).
This speeds up the convergence of the RNN training and
converts the expression level to relative expression levels. We
did not pick the common choice of (0, 1) because we observe
serious gradient vanishing if the small values are used. Use
of small values causes a great number of nodes to remain
silenced throughout the time course.

B. Hyperparameter Setting and Tuning

In this study, we use the same setting of the hyperparameters
for all three datasets. We use batch of 10 continuous data
points due to the limitation of data size. The dataset is firstly
divided into training, validation and test data sets, where
validation and test dataset have T ′ = 20 data points each.
Regularization coefficient α in (2) is set to be 0.01 by using
the criterion of smallest loss on validation set. Due to the time
limitation, hyperparameter tuning is not done for each dataset.
Rather a uniformed setting is used and it provides a great
performance. The RNN uses hidden state st of the size 2000.
This setting allows the model to have an adequate amount of
memory to save information from previous time points. This
setting without regularization may encounter overfitting, but
the good performance on test data, illustrated in Fig.5 appears
to show that the model is not overfitting. This figure contains
the visualization of real data value with predicted values for
the genes in Data 2. Three genes were shown due to the space
limitation. And we also show all genes version for Data 3
for completeness. The red line represents the predicted value

TABLE I
AUROC FOR EACH EXISTING METHODS

Data RNN SCODE lm msgps Cor GENIE3 Jump3

Data 1 0.620 0.536 0.480 0.510 0.505 0.474 0.504

Data 2 0.587 0.581 0.489 0.516 0.492 0.472 0.492

Data 3 0.578 0.523 0.480 0.499 0.524 0.522 0.501

while the blue line represents the true value. The last 40 data
points are 20 validation data points with 20 test data points.
We can see that the trained RNN fits test data set very well
suggesting a good generality of the RNN model. On the other
hand, for overfitting models, the loss for test dataset would get
higher as the training continues on for more epochs. This is
not observable in Figure.3. The training lasts for 200 epochs.
The learning rate is set to be 0.0001. We use threshold β = 9
in (3) here because the maximum expression value is 10 after
scaling.

C. Result

The Area Under Receiver Operating Characteristic Curve
(AUROC) is calculated the same way as SCODE [4]. The cor-
responding reference GRN (provided by [4]) for each dataset is
compared against the constructed weighted GRN. The AUROC
is calculated by converting the predicted GRN to a binary
classification problem on the edges. If there is a directed edge
eij in reference network, then eij is labeled as 1. Otherwise
it is labeled as zero. The weight calculated by (3) of edges
in the constructed GRN can be regarded as the likelihood of
predicting the edge to be 1. After sorting the weight and the
true labels of each edge, True Positive rate and False Positive
rate are calculated by selecting a certain threshold, where all
the edges with weight score higher than the threshold are
predicted to be 1. ROC curve, which is visualized in Fig.6,
is generated by selecting different thresholds and visualizing
the True Positive rates and False Positive rates. The AUROC
is used as the performance measure and is compared with the
result of other existing approaches provided [4]. The results
are displayed in Table.I. The top most performance is in
bold for each dataset. We can see that our RNN approach
outperforms 10% better than almost all the methods across
all three datasets. The comparison study shows that our RNN
approach can provide a better performance than these existing
methods.

V. CONCLUSION

In this work, we introduced a novel way to construct gene
regulation network using time series expression data. Our
method is compared with several other popular methods and
we show that our RNN method is capable of reconstructing
reference gene regulation network more accurately. Due to
time limitation, we used identical hyper parameter setting for
all three datasets. The result could even improve if more proper
hyperparameter is set for each dataset.

Actually more potential benefits can be provided by this
approach. Imagine a wet lab scientists have limited budget to



0 100 200 300 400 500 600 700

0

2

4

6

8

10

GATA6

0 100 200 300 400 500 600 700

0

2

4

6

8

10

NANOG

0 100 200 300 400 500 600 700

0

2

4

6

8

10

T

0 100 200 300 400 500 600 700

0

2

4

6

8

10

EOMES

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ID2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

PRDM1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ID1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF516

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SHOX2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TBX3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

GATA4

0 100 200 300 400 500 600 700

0

2

4

6

8

10

OTX2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

HAND1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

NFIB

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SOX2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

MSX1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

KLF8

0 100 200 300 400 500 600 700

0

2

4

6

8

10

GRHL2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF521

0 100 200 300 400 500 600 700

0

2

4

6

8

10

BHLHE40

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TFAP2A

0 100 200 300 400 500 600 700

0

2

4

6

8

10

GATA3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZEB2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

BNC2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

KAT7

0 100 200 300 400 500 600 700

0

2

4

6

8

10

NFE2L3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZEB1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

FOXF1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

PITX2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

HOXB3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ID4

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF165

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TCF7L2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

POU5F1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SP5

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZIC3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TRPS1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ID3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

AEBP2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

CDX1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TCF7L1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

MIER1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

KLF6

0 100 200 300 400 500 600 700

0

2

4

6

8

10

MYCN

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SMAD2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

PLAGL1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZSCAN10

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF652

0 100 200 300 400 500 600 700

0

2

4

6

8

10

HOXB6

0 100 200 300 400 500 600 700

0

2

4

6

8

10

MSX2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SOX5

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZFP36L2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

LEF1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

BCL11A

0 100 200 300 400 500 600 700

0

2

4

6

8

10

HBP1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

IRX3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

MEIS2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZFX

0 100 200 300 400 500 600 700

2

4

6

8

10

TERF1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TOX

0 100 200 300 400 500 600 700

0

2

4

6

8

10

FOXH1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

HESX1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SOX11

0 100 200 300 400 500 600 700

0

2

4

6

8

10

KLF10

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZIC5

0 100 200 300 400 500 600 700

0

2

4

6

8

10

BBX

0 100 200 300 400 500 600 700

0

2

4

6

8

10

RNF138

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SATB1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

BAZ2B

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ELK3

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZBTB2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ETV5

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SP6

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZFP42

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TULP4

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF471

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ARID4B

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SNAI2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF483

0 100 200 300 400 500 600 700

0

2

4

6

8

10

MAF

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ETV6

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZKSCAN1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ETV1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TMF1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

HIF3A

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SALL2

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SHOX

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SALL1

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SMAD7

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZNF587

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SOX17

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZFP62

0 100 200 300 400 500 600 700

0

2

4

6

8

10

SRF

0 100 200 300 400 500 600 700

0

2

4

6

8

10

JUND

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TUB

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ZFP14

0 100 200 300 400 500 600 700

0

2

4

6

8

10

ARID3A

0 100 200 300 400 500 600 700

0

2

4

6

8

10

CEBPZ

0 100 200 300 400 500 600 700

0

2

4

6

8

10

E2F4

0 100 200 300 400 500 600 700

0

2

4

6

8

10

TCF7

Fig. 4. Prediction vs Real visualization for Data 3: each graph represents one gene. The blue line represents the real data values and the red lines represents
predicted value by the RNN. We can see that for most genes, the RNN fits well. However, due to uniform hyperparameter setting, some genes did get biased
prediction.

find certain potential targets of a transcription factor, if time
series expression data in the same context is available, then
this approach will help make good decision on which gene
we should spend the money on. Also, as we discussed earlier
in the article, this approach may also support co-regulation
relationship discovery by feeding multiple TF artificial ex-
pression data in. This interesting and exciting work will be
performed in the future. We anticipate that our work can

be further extended by LSTM since LSTM is proven to be
easier to train than the vanilla RNN. Also alternative options
for the score measure defined in (3) can be attempted, such
as statistical tests [20], since the key idea is to measure the
difference between predicted time series against original time
series. Applying our method to the analysis of other single
cell RNA-seq data sets and real-time time series datasets is
another promising future research direction.



0 50 100 150 200 250 300 350
0

2

4

6

8

10
Hmga2

0 50 100 150 200 250 300 350
0

2

4

6

8

10
Ascl1

0 50 100 150 200 250 300 350
0

2

4

6

8

10
Fos

Fig. 5. Prediction vs Real visualization after RNN training

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

False Positive Rate (1−Specificity)T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
S

e
n

s
it
iv

it
y
)

data1 : 0.62

data2 : 0.62

data3 : 0.62

data1 : 0.62

data2 : 0.59

data3 : 0.62

data1 : 0.62

data2 : 0.59

data3 : 0.58

Fig. 6. ROC curve for the three datasets

REFERENCES

[1] A. A. Kolodziejczyk, J. K. Kim, V. Svensson, J. C. Marioni, and S. A.
Teichmann, “The technology and biology of single-cell rna sequencing,”
Molecular cell, vol. 58, no. 4, pp. 610–620, 2015.

[2] C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse,
N. J. Lennon, K. J. Livak, T. S. Mikkelsen, and J. L. Rinn, “The dynam-
ics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells,” Nature biotechnology, vol. 32, no. 4, p. 381,
2014.

[3] C. Pina, J. Teles, C. Fugazza, G. May, D. Wang, Y. Guo, S. Soneji,
J. Brown, P. Edén, M. Ohlsson et al., “Single-cell network analysis
identifies ddit3 as a nodal lineage regulator in hematopoiesis,” Cell
reports, vol. 11, no. 10, pp. 1503–1510, 2015.

[4] H. Matsumoto, H. Kiryu, C. Furusawa, M. S. Ko, S. B. Ko, N. Gouda,
T. Hayashi, and I. Nikaido, “Scode: an efficient regulatory network

inference algorithm from single-cell rna-seq during differentiation,”
Bioinformatics, vol. 33, no. 15, pp. 2314–2321, 2017.

[5] C. Y. Lim, H. Wang, S. Woodhouse, N. Piterman, L. Wernisch, J. Fisher,
and B. Göttgens, “Btr: training asynchronous boolean models using
single-cell expression data,” BMC bioinformatics, vol. 17, no. 1, p. 355,
2016.

[6] D. Di Bernardo, T. S. Gardner, and J. J. Collins, “Robust identification
of large genetic networks,” in Biocomputing 2004. World Scientific,
2003, pp. 486–497.

[7] T. S. Gardner, D. Di Bernardo, D. Lorenz, and J. J. Collins, “Inferring
genetic networks and identifying compound mode of action via expres-
sion profiling,” Science, vol. 301, no. 5629, pp. 102–105, 2003.

[8] M. Bansal, G. D. Gatta, and D. Di Bernardo, “Inference of gene
regulatory networks and compound mode of action from time course
gene expression profiles,” Bioinformatics, vol. 22, no. 7, pp. 815–822,
2006.

[9] Y. Zhao, T. H. Hoang, P. Joshi, S.-H. Hong, and D.-G. Shin, “Deep
pathway analysis incorporating mutation information and gene expres-
sion data,” in 2016 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE, 2016, pp. 260–265.

[10] Y. Zhao, T. H. Hoang, P. Joshi, S.-H. Hong, C. Giardina, and D.-G.
Shin, “A route-based pathway analysis framework integrating mutation
information and gene expression data,” Methods, vol. 124, pp. 3–12,
2017.

[11] Y. Zhao, S. Piekos, T. Hoang, and D.-G. Shin, “A framework using
topological pathways for deeper analysis of transcriptome data,” in
Bioinformatics Research and Applications: 14th International Sympo-
sium, ISBRA 2018, Beijing, China, June 8–11, 2018, Proceedings.
ISBRA, 2018.

[12] Y. Zhao, “An extension of deep pathway analysis: A pathway route
analysis framework incorporating multi-dimensional cancer genomics
data,” in International Symposium on Bioinformatics Research and
Applications. Springer, 2018, pp. 113–124.

[13] T. H. Hoang, Y. Zhao, Y. Lam, S. Piekos, Y.-C. Han, C. Reilly, P. Joshi,
S.-H. Hong, C. O. Sung, C. Giardina et al., “Biotarget: A computational
framework identifying cancer type specific transcriptional targets of
immune response pathways,” Scientific reports, vol. 9, no. 1, p. 9029,
2019.

[14] P. J. Werbos, “Generalization of backpropagation with application to a
recurrent gas market model,” Neural networks, vol. 1, no. 4, pp. 339–
356, 1988.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[17] D. Shimosato, M. Shiki, and H. Niwa, “Extra-embryonic endoderm cells
derived from es cells induced by gata factors acquire the character of
xen cells,” BMC developmental biology, vol. 7, no. 1, p. 80, 2007.

[18] B. Treutlein, Q. Y. Lee, J. G. Camp, M. Mall, W. Koh, S. A. M. Shariati,
S. Sim, N. F. Neff, J. M. Skotheim, M. Wernig et al., “Dissecting
direct reprogramming from fibroblast to neuron using single-cell rna-
seq,” Nature, vol. 534, no. 7607, p. 391, 2016.

[19] L.-F. Chu, N. Leng, J. Zhang, Z. Hou, D. Mamott, D. T. Vereide, J. Choi,
C. Kendziorski, R. Stewart, and J. A. Thomson, “Single-cell rna-seq
reveals novel regulators of human embryonic stem cell differentiation
to definitive endoderm,” Genome biology, vol. 17, no. 1, p. 173, 2016.

[20] J. Serra and J. L. Arcos, “An empirical evaluation of similarity measures
for time series classification,” Knowledge-Based Systems, vol. 67, pp.
305–314, 2014.

http://tensorflow.org/

